3.2.39 \(\int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\) [139]

3.2.39.1 Optimal result
3.2.39.2 Mathematica [A] (verified)
3.2.39.3 Rubi [A] (verified)
3.2.39.4 Maple [A] (verified)
3.2.39.5 Fricas [A] (verification not implemented)
3.2.39.6 Sympy [F(-1)]
3.2.39.7 Maxima [F(-1)]
3.2.39.8 Giac [A] (verification not implemented)
3.2.39.9 Mupad [F(-1)]

3.2.39.1 Optimal result

Integrand size = 23, antiderivative size = 183 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {163 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {17 \cos ^2(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {197 \sin (c+d x)}{24 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {95 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{48 a^3 d} \]

output
-1/4*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)-17/16*cos(d*x+c)^2*s 
in(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)+163/32*arctanh(1/2*sin(d*x+c)*a^(1/2) 
*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-197/24*sin(d*x+c)/a^2/d 
/(a+a*cos(d*x+c))^(1/2)+95/48*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/a^3/d
 
3.2.39.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.67 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {\left (-978 \sqrt {2} \text {arctanh}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+\sqrt {1-\cos (c+d x)} (379+479 \cos (c+d x)+80 \cos (2 (c+d x))-8 \cos (3 (c+d x)))\right ) \sin (c+d x)}{48 d \sqrt {1-\cos (c+d x)} (a (1+\cos (c+d x)))^{5/2}} \]

input
Integrate[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^(5/2),x]
 
output
-1/48*((-978*Sqrt[2]*ArcTanh[Sqrt[Sin[(c + d*x)/2]^2]]*Cos[(c + d*x)/2]^4 
+ Sqrt[1 - Cos[c + d*x]]*(379 + 479*Cos[c + d*x] + 80*Cos[2*(c + d*x)] - 8 
*Cos[3*(c + d*x)]))*Sin[c + d*x])/(d*Sqrt[1 - Cos[c + d*x]]*(a*(1 + Cos[c 
+ d*x]))^(5/2))
 
3.2.39.3 Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.09, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 3244, 27, 3042, 3456, 27, 3042, 3447, 3042, 3502, 27, 3042, 3230, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x)}{(a \cos (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^4}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle -\frac {\int \frac {\cos ^2(c+d x) (6 a-11 a \cos (c+d x))}{2 (\cos (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cos ^2(c+d x) (6 a-11 a \cos (c+d x))}{(\cos (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (6 a-11 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \frac {\cos (c+d x) \left (68 a^2-95 a^2 \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\cos (c+d x) \left (68 a^2-95 a^2 \cos (c+d x)\right )}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (68 a^2-95 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3447

\(\displaystyle -\frac {\frac {\int \frac {68 a^2 \cos (c+d x)-95 a^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {68 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )-95 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3502

\(\displaystyle -\frac {\frac {\frac {2 \int -\frac {95 a^3-394 a^3 \cos (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {-\frac {\int \frac {95 a^3-394 a^3 \cos (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\int \frac {95 a^3-394 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3230

\(\displaystyle -\frac {\frac {-\frac {489 a^3 \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx-\frac {788 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {489 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {788 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle -\frac {\frac {-\frac {-\frac {978 a^3 \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {788 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {-\frac {\frac {489 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {788 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {190 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{4 a^2}+\frac {17 a \sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

input
Int[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^(5/2),x]
 
output
-1/4*(Cos[c + d*x]^3*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^(5/2)) - ((17*a 
*Cos[c + d*x]^2*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + ((-190*a* 
Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d) - ((489*Sqrt[2]*a^(5/2)*ArcTa 
nh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/d - (788*a^ 
3*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(3*a))/(4*a^2))/(8*a^2)
 

3.2.39.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.2.39.4 Maple [A] (verified)

Time = 1.42 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.32

method result size
default \(\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (128 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+489 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-512 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-87 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {2}\, \sqrt {a}+6 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{96 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(242\)

input
int(cos(d*x+c)^4/(a+cos(d*x+c)*a)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/96/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(128*2^(1/2)*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^6+489*2^(1/2)*ln(2*( 
2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/ 
2*d*x+1/2*c)^4-512*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2* 
d*x+1/2*c)^4-87*cos(1/2*d*x+1/2*c)^2*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*2^(1/2 
)*a^(1/2)+6*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(7/2)/sin(1/ 
2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.39.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.14 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {489 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (32 \, \cos \left (d x + c\right )^{3} - 160 \, \cos \left (d x + c\right )^{2} - 503 \, \cos \left (d x + c\right ) - 299\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{192 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/192*(489*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1 
)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt 
(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c 
) + 1)) + 4*(32*cos(d*x + c)^3 - 160*cos(d*x + c)^2 - 503*cos(d*x + c) - 2 
99)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d 
*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.2.39.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4/(a+a*cos(d*x+c))**(5/2),x)
 
output
Timed out
 
3.2.39.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")
 
output
Timed out
 
3.2.39.8 Giac [A] (verification not implemented)

Time = 3.30 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.67 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {\frac {3 \, \sqrt {2} {\left (29 \, \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 27 \, \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{3} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {128 \, \sqrt {2} {\left (a^{\frac {13}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a^{\frac {13}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{9} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{96 \, d} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")
 
output
1/96*(3*sqrt(2)*(29*sqrt(a)*sin(1/2*d*x + 1/2*c)^3 - 27*sqrt(a)*sin(1/2*d* 
x + 1/2*c))/((sin(1/2*d*x + 1/2*c)^2 - 1)^2*a^3*sgn(cos(1/2*d*x + 1/2*c))) 
 - 128*sqrt(2)*(a^(13/2)*sin(1/2*d*x + 1/2*c)^3 + 3*a^(13/2)*sin(1/2*d*x + 
 1/2*c))/(a^9*sgn(cos(1/2*d*x + 1/2*c))))/d
 
3.2.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(5/2), x)